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EXPONENTIAL BOUNDS OF MEAN ERROR
FOR THE NEAREST NEIGHBOR ESTIMATES

OF REGRESSION FUNCTIONS

L. C. Zhao

ABSTRACT

Let (X,Y), (X1,Y1),...S(XnYn) be i.i.d. Rr X R- valued random vectors

with EIYI<-, and let mn (x) be a nearest neighbor estimate of the regression func-
tion m(x) = E(YIX=x). In this paperwe establish an exponential bound of the

mean deviation between mn (x) and m(x) given the training sample ZO = (X ,y ,...,Xd.

under the conditions as weak as possible. This is a substantial improvement

on Beck's result.

Key words. Regression function, nearest neighbor estimate, exponential

bound, mean error, training sample.
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1. INTRODUCTION

Let (X,Y), (X1,Y1),...,(XnYn) be i.i.d. Rd x R- valued random vectors

with EIYI<c. To estimate m(x) = E(YIX=x), the regression function of Y with

respect to X, Stone (1977) and others proposed the so-called weight estimation

n
(1) mn(X) = lW nj(X)yj,

where Wnj(x) = Wnj(XX1,...,Xn) is a Borel-measurable function of its arguments.n
Let Vn, j j = 1,...,n, be non-negative real number such that I = 1. For

d j=1

suitable-chosen metric Ila-bl] on Rd (such as L2 or L..), rearrange Xj, j =n:

(2) llx-xll IXx -xll: ..1 1X -1

(ties are broken by comparing indices), and set

n
(3) nI) = j VnjY .

Then we obtain the nearest neighbor (NN) estimates of m(x).

Many scholars studied convergence problem of these estimates from different

points of view. (For the universal consistency, one can refer to, for example,

Stone (1977). For the pointwise moment-consistency, see Devroye (1981). For

the pointwise a.s. consistency, see Devroye (1981), Zhao and Bai (1984)). In

this paper, we study another convergency of these estimates.

Write Xn = (X1 ,...,Xn), yn = (Y1,...,yn) and Zn = (Xn,yn). Let gn = gn(xzn)

be an estimate of m(x). In some problems, we are interested in the following

mean deviation of gn given the training sample Zn:

(4) D(gn) = E{g n(X,Zn)-m(x)IIZn1

,= fdIgn(xzn)-m(x) Q(dx),

where Q denotes the distribution of X.
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Take k=kn < n, and put

k
(5 (X) j.x

For this class of estimates, Beck (1979) established the following theorem:

Suppose that the following conditions are satisfied:

(6) (i) Y is bounded.

d(ii) m(x) is continuous on R

(iii) Q has a continuous density f.

(iv) k.-o and k/n-*O as n-o-.

Then, for any given e>O,

' P{D(m n)> 0. < e-c

i~ where C>O is a constant independent of n.

This theorem deals only with a special case of NN estimates, and the assump-

tions are rather restrictive. Recently, we substantially improved this result.

We established the following:

Theorem 1. Let mn (x) be a NN estimate of m(x) defined by (2) and (3).

Suppose that the following conditions are satisfied:

(7) (i) Y is bounded.

(ii) Q has a density f.

(iii) There exists a sequence of integers k = k such that

Sk -). , kln -o 0, n

Supn kmaxljk < -and j1~~jO

Then for any given cPO, we have

P{D(mn )>c) <_ e-cn

where C>O is a constant independent of n.

-p ~ - ~ . -It
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Note that the special case considered by Beck is included in this theorem.

Besides, this theorem gives a substantial improvement of Beck's result, by get-

ting rid of the continuity requirement of m(x) and f(x), the density of Q.

2. SOME LEMMAS.

Theorem 1 is valid for the L2 norm or L norm on Rd, here we only give the

proof for L. norm. For simplicity, we make the following convention: eele 2 9

... ,C,C 0 C1 ,.. .,c,8 1 ,8 2 ,6, etc., are all constants independent of n. IA or I(A)

denotes the indicator of a set A. #(A) denotes the cardinal of set A. Sx p =
• **

{ueRd: Iju-xL <pl. Q and x denote the outer measure generated by Q and the

Lebesque measure x (on Rd), respectively. We need the following lemmas in the

sequel.

Lemma 1 (Besicovitch Covering Lemma). Let E be bounded subset of Rd, and

let K be a family of cubes covering E which contains a cube Dx with center x

for each xEE. Then there exist points {xk)in E such that

(i) EcUDxk-

(ii) there exists a constant a depending only on d such'that kI(Dxk) <_.

Refer to Wheeden and Zygmund (1977), pp. 185-187.

Let Q be the empirical measure of X2 ,...,7n, and T>o be a

given constant. Fix St(o,1/2v) and assume that h = hne(ol) .  Set

(8) G* = {xGSoT: Qn(Sxh)< 6 Q(Sxh)}n o,T: Q(xh)< S,h)"

and

(9) E* - xcSo0,T: 01(2"p)d<Q(Sx,h ) 2 (2p)d

for any pe(o,1)},

Where a 1>o and 02>o are constants to be chosen later.

' ~ ~ ~ ~ ~ .°*" "- "% " i '" I% %"& ' u "m "
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LEMMA 2. suppose that Q has a density f. Then for any c > 0, we can

choose $I small enough and 82 large enough such that Q*(So,T-E*) < e.

Note that for any Borel-measurable set EC E*, we have

Bi < f(x) < B2, for almost all xeE(X).

LEMMA 3. Suppose that Q has a density f, h = hn L(0,1) and nhd -. Then

for any given > >0, we have

P{Q*(G*) > e} < eCn.

Lemmas 2 and 3 can be deduced from Lemma 1. For the proof, see

Zhao (1985).

Lemma 4. Suppose that fRdlg(x)IPF(dx) < - for some p >0, then

Slim Sx,h Jg(u)-g(x)jPF(du)/F(Sx,h) 0

for almost all x(F).

Refer to Wheeden and Zygmund (1977), p. 191, example 20.

3. Proof of Theorem 1

Suppose that IYI < M. Then

J I Vn (Yx'm(x))Q(dx) < 2M Vnj 0

as n + -. Without loss of generality, we can assume I Vnj = 0 for any n.
jk

It is enough to prove that for each fixed T > 0,

(10) P{4So, T/2Imn(x)-m(x)IQ(dx) > } < e-cn.

By Lemma 2, there exists sI = SI(e), I=1,2, and a compact set ECE*

such that

'I 3 A
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(11) Q(SOT-E) < e/8M,

where E* is defined by (9).

Fix 6S(O,*o), and take a > (2 d$1 0 - I . Set

h = hn = (ak/n)l/d V

dn

then h- 0 and nhd -as n-.

By Lemma 3, there exists a compact set Hn such that with h as above

(12) HnC {( So,T: Qn(Sx,h) I 6Q(Sx,h)}

and

(13) P{Q(So,T-Hn) > e/8M} < e -

For xcHnn E, Qn(Sn,h) > SQ(Sx,h) _> 816X(Sx,h) = 62 ak/n > k/n, so
that xx x all fall

X1 X2,. X int kx,h* d
Partition Rd into sets with the form n[(i -1)h,i h), where ij=1

o..,3id = 0, + 1,... . Call the partition w. Set ' = {k'Y,BCSO,T}. For

B"I', put

W(B) = {B'Y,0(B,B') < 3h), W(B) = UB'Gi(B)B1,

where p(B,B') = inf{IIx-x'll: xEB, x'eB'}. Then there exists a constant

- Cd such that for any B'e' we have #(W(B)) Cd. It is easy to show by

induction that, C' can be divided into C 2 ) disjoint subsets Ti' i=1

...,C2 , such that for any two sets BI, B2 in the same Ti, we have

W(B1) fl W(B2) = 0.

Denote by B(x) the cube B#Y which contains x. If xH nn E and B(x)E-T',

then for any ueB(x), we have Sx,hc Su,2hCW(B(x)), so that, from Qn(Sx,h)

z k/n it follows that X ,...,X are also contained in W(B(x)). If we write

1
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An = (Brv': BflHnflE#01

then, as mentioned above, for any BeA n' W(B) contains the k nearest

neighbors of each O(B. Further, we set H An '4i' i=1,290.,C 2. it

is easy to see that

JSO,T,2 Imn(x)-m(x) IQ(dx)l fS0,- + S 0,T~-H n + f H nn En fl /2

By (11), we have

f 0,T-E Imn(x)-m(x)IQ(dx) <S 2MQ(S,T~-E) < e/4.

By (13),

P(fISO,T-Hn imn(x)-m(x)IQ(dx) a e/4)

<4 P{Q(SO,T-H n) i e/8M)

Hence to prove (10), it is enough to prove that

r-C 3 n
(14) P{ JH flEflsO,/ imn(x)-ni(x)IQ(dx) 1 e/2) < e

For large n,

f~fll~flOT/ I(x)-m(x)IQ(dx)

B IAn JBnflmn(x)-m(x)!Q(dx)

(x) kQdx
i~ ~ ~ ~ = =1B- ~nlnx

*~~x I ~Im V n.m l(rv,
=~~1 Bij~l''n'~'

4. **~~*** '** I~. . .
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B(5 = IBnEIln()-m(x)IQ(dx), i=1,...C.

r k
o(B) = VBnEI .Vnj(Yj-m(X))IQ(dx)/Q(Bn E),

dni = #{Bc'/Hi , O(B) > e/(8C2 )}, i=1,...,C2 .

To prove (14), it is enough to show that, for each i, 1 < i < C2 , we have

(16) KIM-> /(4c ) < e

(17) 
P{Jni -I E:/(4C) < e

2

For almost all xeBnE(X), f(x) < 82. Hence,

Ini.<c /(8C2) + 2MdniO2 k/n.

Write C6 = e(16MC2  2) " , then

(18) P{I > i6(4C2) I < P{dni > C6n/k}.

Now we proceed to prove that, for any Befi ,

(19) Pf (B) _ z IC2 iXnj < e ,

where Xn = (XI,...,Xn) is defined as before.

For any el > 0 and s > 0, by Jensen's inequality we have

-S £

(20) P{o(B) > JlXnl < e lE{exp(so(B))IXn}

<. e - B, 18n E Eexp(sl kiVni[Y-m(X ) ] xXn IQ(dx)/Q(BflE).

.. , - -~f l X j ='[.- m ". .I I.

1 j.
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When {X', j < k} is given, Y ,.0.,Y are independent. From this and the
Ja1

inequality let-l-ti <1t2e lti for any real t, it follows that,

E{exp(s V _Y~m(X )]) 1Xnl

k
n I EVexp(sV [ .Yx-m(x0)JflX }

j=l
k 8+sC 'exp (2sC8 k"1 )I}

exp{s 2C k-lexp(2sC k- )}.
8 80

Here we have written C9  Supn{k max..V .} and C8 = C9M. In the

same way,

E{exp(s k V .[m(X)- yX)IXn}j = ' J J

I expfs 2C2k-1 exp(2sC 8k'
l .

In view of (20), we get

P{O(B) > £IXn) < 2 expf-sc+s 2C2k'lexp(2sC8 k-1)}

Take s = uk with P being small enough, we have

IP{O(B) 
> JlXn) }  C1

This is just (19).

Since for each BfH i , W(B) contains the k nearest neighbors of each

x*B, and W(B1 )n W(B2) = 0 for any B1, B2 ., we see that when Xn = (X1 ,...,xn)

is given, { (B), BeHi} is a group of conditionally independent variables. Put

G(B) = {(B) > 1}. Then by (19) and #(Hi) < #('') < C11n/k, we have

OIL _
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P{dni> Cdn/kIX n }

:" P{uH c fi #(H).tC6n/kn B HG(B) I Xn}

-c< Zf*ZHi,#(H) >C6n/k P( BEHG(B )I Xn)

= Hfi Hi,#(H)>C6n/kIBE P(G(B)Ixn)

(21) _ 6n/k<i#(Hi) #(i(e-c7k)j

-C6C7 n #(H ) -C6C7n C11n/k -C12n
<e 2 <2 2 <e

From (18) and (21) it follows (16) is valid.

Now we proceed to prove (17). As mentioned above, for each BeH i,
x x

S..., x all fall into W(B). Noticing the conditions imposed on V 's,

we see that

rk
(22) d ni V (m(X)-m(x))IQ(dx)

rn~~ ~~ BEi~l =1~ ni

-12 n9I -T J.=IIW(B) (XJ)fBn Em(Xj )-m(x) IQ(dx)

i J=1

9 Be'kl nl IW(B) (XjZB(Xj" " = ZB~ij=l

where

(23) ZB (u) -m(x)IQ(dx) < 2M 2 k/n.

Here, the following facts are used: Im(x)l < M, f(x)_< a2 for xeB nE and,

X(B) < hd = ak/n.

Put 2 = E(8C2C9 )'I. To prove (17), it suffices to prove that

(24) n ~ IW ( ) z(X)ZB(Xi) < 2k e2} < e

A PB J B
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Let N be a Poisson random variable with parameter n, which is

independent of X1,X2,..,. If IN-ni < nE3 = ne2/(2M62a), then by (23)

n n
2BQT i j= IW(B)(XJ)B(Xj) j= ~W(B)(Xj)ZB(Xj))I

1iN-nI2M8 2 ak/n < r:2 k.

It follows that

n
(25) j=1O'yi W(B)(Xj)ZB(Xi) .124~21

N
-1 P(Nn~n + P{B.'Fi j 1 WB XJ zB(j > k2l

It is easy to show that

(26) P{IN-nlnp 3 l < e-C1

Since W(B), Bai., are disjoint, we see that for t > 0,

N

<e-te2 k Ce- nn (

p...'e (27) et. (Efexp(t2B,(, Iw(B()ZB(Xl))})e'

(27) e- e n~ * ( B lf B)e tB ( Q(du) + 1 - Q(U W(B)))

exp{ -te2 k + e~ -1)Q(du))

(28) lmsuP BfWB)exp(.fB(u))-l]Q(du) =0.

By (23), there exist constants C 15, C 16 such that

LEM



-ZB(u) C4 15

and

ex(..B(u)) ' 16 -ZB(u)C

To prove (28), it suffices to show that

(29) liniSupn BefflE(dx)fWB)m(u)-m(x)IQ(du) =0.

Assume that BE.y1, BflEt and xeBflE, then W(B)c Sx5h' where h=

(ak/n)/d By Lemmna 2,

Q(SX:5h 1 2(1h~d= lo 2ck/n.

Put C1 10d 2a then

* (30) n L 1ffE(dx)fW i)m(u)-m(x)IQ(du)

.C171B~fiJBn EQ(dx){ fS.,Shlm(u)-m(x) JQ(du)/Q(Sx 50)

!CiiJQ~dx{JfS x5h Im(u)-m(x)IQ(du)/Q(Sx,5h)}

By Lemmna 4, for almost all x(Q),

lrn jS in(u)-m(x)IQ(du)/Q(Sx,5h) = 0.
n-).- x ,5h

Further, for xaS(Q), the support of Q, we have

S Jx,5h im(u)-m(xHIQ(du)/Q(Sx,5h) < 2M

Hence, by the dominated convergence theorem, (29) is valid. Thus (28)

is proved.

Take t -n/k in (27), we have
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N

(31) P{1Bevi  IIW(B)(Xj)ZB(Xj) > ke2}

-C
".exp{-e 2n+(n)} < e 18

From (25), (26) and (31), it follows that (24) holds, and (17) is

valid. From (16) and (17), Theorem 1 is proved.

"
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